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In theoretical cognitive science, there is a tension between highly structured models whose parameters
have a direct psychological interpretation and highly complex, general-purpose models whose
parameters and representations are difficult to interpret. The former typically provide more insight
into cognition but the latter often perform better. This tension has recently surfaced in the realm of
educational data mining, where a deep learning approach to estimating student proficiency, termed
deep knowledge tracing or DKT [17], has demonstrated a stunning performance advantage over the
mainstay of the field, Bayesian knowledge tracing or BKT [3].

DKT [17] is a standard LSTM recurrent network architecture whose input sequence consists of the
series of exercises given to a student along with a binary flag indicating whether or not not the student
completed the exercise correctly. DKT’s charge is to estimate the success rate for any exercise that
could follow next. DKT achieves substantial improvements in prediction performance over BKT
on two real-world data sets (ASSISTments, Khan Academy) and one synthetic data set which was
generated under assumptions that are not tailored to either DKT or BKT. DKT achieves a reported
25% gain in prediction quality, as assessed by the signal detection discriminability measure AUC,
over the best previous result on the ASSISTments benchmark.

DKT, which appeared at NIPS in 2015, made a splash in the popular press, including an article in
New Scientist entitled, “Hate exams? Now a computer can grade you by watching you learn,” and
descriptions of the work in the blogosphere (e.g., [5]). DKT also shook up the educational data
mining community, which is entrenched in traditional probabilistic and statistical models, some of
which—like BKT—date back over twenty years.

At the 2016 Educational Data Mining Conference, three papers were presented [11, 18, 19] that
examine DKT and its relationship to traditional probabilistic and statistical models. The papers all
argue that while DKT is a powerful, useful, general-purpose framework for modeling student learning,
its gains do not come from the discovery of novel representations—the fundamental advantage of
deep learning. Assessing student proficiency, or knowledge tracing, does not appear to be a domain
that benefits from ‘depth’; ‘shallow’ models perform just as well and offer greater interpretability and
explanatory power.

In this extended abstract, we collect the results from the three interrelated papers, with the goal of
encouraging additional scrutiny in evaluating and comparing models.
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1 Modeling Student Learning

The domain we’re concerned with is electronic tutoring systems which employ cognitive models to
track and assess student knowledge. Beliefs about what a student knows and doesn’t know allow a
tutoring system to dynamically adapt its feedback and instruction to optimize the depth and efficiency
of learning.

Ultimately, the measure of learning is how well students are able to apply skills that they have been
taught. Consequently, student modeling is often formulated as time series prediction: given the series
of exercises a student has attempted previously and the student’s success or failure on each exercise,
predict how the student will fare on a new exercise. Formally, the data consist of a set of binary
random variables indicating whether student s produces a correct response on trial t, {Xst}. The
data also include the labels, {Yst}, which characterize the exercise. These labels might index the
specific exercise, e.g., 3 + 4 versus 2 + 6, or they might provide a more general characterization of
the exercise, e.g., single digit addition. In the latter case, the label denotes a skill that must be applied
to obtain a solution. (The term skill is sometimes referred to as a knowledge component or concept.)
In this article, we use the terms exercise indexed and skill indexed to refer to labels that indicate either
a particular exercise or a general skill required to perform the exercise.

2 Knowledge Tracing

BKT models skill-specific performance, i.e., performance on a series of exercises that all tap the
same skill. A separate instantiation of BKT is made for each skill, and a student’s raw trial sequence
is parsed into skill-specific subsequences that preserve the relative ordering of exercises within a skill
but discard the ordering relationship of exercises across skills. For a given skill σ, BKT is trained
using the data from each student s, {Xst|Yst = σ}, where the relative trial order is preserved. To
distinguish between absolute trial index and the relative trial index within a skill, we use t to denote
the former and use i to denote the latter.

BKT is based on a theory of all-or-none human learning [2] which postulates that the knowledge
state of student s following the i’th exercise requiring a certain skill, Ksi, is binary: 1 if the skill
has been mastered, 0 otherwise. BKT, formalized as a hidden Markov model, infers Ksi from the
sequence of observed responses on trials 1 . . . i, {Xs1, Xs2, . . . , Xsi}. BKT is typically specified by
four parameters: P (Ks0 = 1), the probability that the student has mastered the skill prior to solving
the first exercise; P (Ks,i+1 = 1 | Ksi = 0), the transition probability from the not-mastered to
mastered state; P (Xsi = 1 |Ksi = 0), the probability of correctly guessing the answer prior to skill
mastery; and P (Xsi = 0 |Ksi = 1), the probability of answering incorrectly due to a slip following
skill mastery. Typically, the model assumes no forgetting, i.e., K cannot transition from 1 to 0.

BKT is a highly constrained, structured model. It assumes that the student’s knowledge state is binary,
that predicting performance on an exercise requiring a given skill depends only on the student’s
binary knowledge state, and that the skill associated with each exercise is known in advance. If
correct, these assumptions allow the model to make strong inferences. If incorrect, they limit the
model’s performance. The only way to determine if model assumptions are correct is to construct
an alternative model that makes different assumptions and to determine whether the alternative
outperforms BKT.

DKT is exactly such an alternative model. Rather than separating the skills, DKT models all skills
jointly. The input to the model is the complete sequence of exercise-performance pairs, {(Xs1, Ys1)...
(Xst, Yst)... (XsT , YsT )}, presented one trial at a time. As depicted in Figure 1, DKT is a recurrent
neural net which takes (Xst, Yst) as input and predicts Xs,t+1 for each possible exercise label. The
model is trained and evaluated based on the match between the actual and predicted Xs,t+1 for the
tested exercise (Ys,t+1). In addition to the input and output layers representing the current trial and
the next trial, respectively, the network has a hidden layer with fully recurrent connections (i.e.,
each hidden unit connects back to all other hidden units). The hidden layer thus serves to retain
relevant aspects of the input history as they are useful for predicting future performance. The hidden
state of the network can be conceived of as embodying the student’s knowledge state. Piech et al.
[17] used a particular type of hidden unit, called an LSTM (long short-term memory) [8], which
is interesting because these hidden units behave very much like the BKT latent knowledge state,
Ksi. To briefly explain LSTM, each hidden unit acts like a memory element that can hold a bit of
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Figure 1: Deep knowledge tracing (DKT) architecture. Each rectangle depicts a set of processing
units; each arrow depicts complete connectivity between each unit in the source layer and each unit
in the destination layer.

information. The unit is triggered to turn on or off by events in the input or the state of other hidden
units, but when there is no specific trigger, the unit preserves its state, very similar to the way that
the latent state in BKT is sticky—once a skill is learned it stays learned. With 200 LSTM hidden
units—the number used in simulations reported in [17]—and 50 skills, DKT has roughly 250,000
free parameters (connection strengths). Contrast this number with the 200 free parameters required
for embodying 50 different skills in BKT.

With its thousand-fold increase in flexibility, DKT is a very general architecture. One can implement
BKT-like dynamics in DKT with a particular, restricted set of connection strengths. However, DKT
clearly has the capacity to encode learning dynamics that are outside the scope of BKT. This capacity
is what allows DKT to discover structure in the data that BKT misses.

3 Data Sets and Analyses

As we explained, a separate instantiation of BKT is made for each skill, whereas DKT models all
skills simultaneously. This difference leads to several subtle issues with any analysis that compares
the models. As it turns out, these issues, when not properly addressed, yield results favoring DKT.

3.1 Exercises tagged with multiple skills

Xiong et al. [19] and Wilson et al. [18] re-examined one of the key data sets used to compare BKT
and DKT, called ASSISTments 2009-2010 [1]. They noted that some exercises were tagged with
multiple skill labels. Multiple skills were handled by replicating a record in the data base. For BKT,
the data were partitioned by skill so the replicated records ended up in distinct data sets. However,
for DKT and any model that processes all skills simultaneously, the model will see the same student
interaction several times in a row, essentially providing the model access to ground truth when making
a prediction. These duplicated rows account for approximately 25% of the data set.1

Xiong et al. created a new version of the data set in which multi-skill exercises were assigned a single
skill label that denotes the combination of skills. DKT still significantly outperforms BKT with the
corrected data set, but the magnitude of the difference shrinks, as shown in Table 1. Performance is

1Original and cleaned versions of the data can be found at http://tiny.cc/assistments09data.

data set DKT AUC score BKT AUC score
ASSISTMENTS 2009-2010 (original) 0.81 0.60
ASSISTMENTS 2009-2010 (corrected) 0.75 0.63

Table 1: Correcting data set for duplicate records
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measured with the AUC score which ranges from 0.5 (no ability to discriminate correct from incorrect
trials) to 1.0 (perfect ability).

3.2 Computing AUC

Khajah et al. [11] investigated two alternative methods for obtaining an AUC score. First, AUC can
be calculated on a per-skill basis and the per-skill AUCs can be averaged to yield an overall AUC.
Second, predictions may be combined across all skills to compute a global AUC. It appears that in
the original DKT paper [17], AUC for BKT is computed on a per-skill basis whereas AUC for DKT
is computed across skills. (This difference in methodology arose because BKT operates on a per-skill
basis and DKT operates across skills.)

Per-skill and across-skill AUCs differ in two regards. First, per-skill AUC weighs all skills equally
in the final computation, whereas across-skill AUC weighs all trials equally. Because some skills
have far more trials than others, and because one would expect any model to perform more poorly on
skills for which there are less data, the per-skill AUC tends to be lower than the across-skill AUC.
Second, when skills are separated via the per-skill AUC, the averaged AUC score does not reflect a
model’s ability to predict relative accuracy of one skill versus another; in contrast, the across-skill
AUC improves to the degree that model predictions capture the relative accuracy across skills. Thus,
the per-skill AUC will tend to be lower, as long as a model can predict the relative difficulty of
skills—the sort of base rate statistic that should be readily learned.

For these two reasons, it is unadvisable to use per-skill AUC to evaluate one model and across-skill
AUC to evaluate another. Table 2 shows that when BKT is re-evaluated with across-skill AUC on two
data sets, about 1/3 of the gap between DKT and BKT performance vanishes.

4 Comparisons between DKT and state-of-the-art statistical models

In the previous section, we argued that the comparison between DKT and BKT in [17] was biased
in favor of DKT. Because the two source of bias were discovered by different researchers, we have
not yet measured the combined effect of the two biases. Nonetheless, we believe that DKT will still
outperform off-the-shelf BKT. The thrust of our research was not focused on comparing DKT to
off-the-shelf BKT, but rather, to elaborations of BKT that have been proposed in the literature as well
as other statistical models.

4.1 Comparison to regression models

Xiong et al. [19] compared DKT to a logistic regression model popular in the educational data mining
community, performance factors analysis or PFA [16]. PFA is formulated as a skill-specific model
whose regressors consist of the number of previous correct and incorrect responses on exercises that
student s has previously performed requiring skill j, denoted csj and esj :

P (Xsi = 1) = logistic

∑
j∈Qi

αjcsj + βjesj + δj

 ,

where i is the exercise label, Qi is the set of skills required for exercise i, and αj , βj , and δj are
model coefficients. As Table 3 summarizes, DKT is matched by PFA on two data sets, but is notably
superior on one data set.

data set DKT
across-skill AUC

BKT
across-skill AUC

BKT
per-skill AUC

ASSISTMENTS
2009-2010 (original) 0.86∗ 0.73 0.67∗

Piech synthetic 0.75 0.62 0.54

Table 2: Comparison of alternative methods of computing AUC score. (∗These scores are based on
different BKT and DKT implementations than the corresponding scores reported in Table 1.)
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data set DKT AUC PFA AUC
ASSISTMENTS 2009-2010 (corrected) 0.75 0.73
ASSISTMENTS 2014-2015 0.70 0.69
KDD 0.79 0.71

Table 3: Comparison of DKT and PFA

4.2 Comparison to additive-factor models

Item Response Theory (IRT) is a standard framework for modeling student responses dating back to
the 1950s [4, 14]. A single number, called the proficiency or ability represents a student’s knowledge
state during the course of completing several assessment. It is assumed that this proficiency is not
changing during this examination.

The model assumes that many students have completed overlapping sets of exercises and assigns
each student s a proficiency ρs ∈ R. A key innovation of IRT is to model variation across different
exercises. In its simplest form, each exercise i is assign a parameter δi representing the difficulty of
the specific exercise. The probability that student s answers exercise i correctly is given by:

P (Xsi = 1) = f(ρs − δi),
where f is a sigmoidal function. The cumulative distribution function of the standard normal is used
in the work we describe by Wilson et al. [18].

IRT has been extended in many different directions. Wilson et al. explore two extensions, hierarchical
IRT (HIRT) and temporal IRT (TIRT). HIRT exploits structure among the exercises by assuming that
related exercises—those tapping the same skill—will have difficulty parameters drawn from the same
distribution. Essentially, individual exercises vary in difficulty, but exercises for easy skills tend to be
easier and exercises for harder skills tend to be harder. HIRT corresponds to a hierarchical Bayesian
model in which the mean of the δi distribution is in turn distributed according to a normal mean-zero
hyperprior. TIRT models each ρs as a time-varying stochastic process. Wilson et al. selected a
Wiener process.

IRT, in contrast to BKT, is fundamentally based on the notion of exercise-specific difficulties. (BKT
has been extended in IRT-like directions to individuate the difficulty of exercises that tap the same
skill, e.g., [6, 10, 12, 15, 20].) Nonetheless, the input label, i, used for IRT could be either exercise
indexed or skill indexed. Similarly, DKT can use either exercise- or skill-indexed labels as input.
Wilson et al. [18] employ a variety of representations and compare the three variants of IRT to a
version of DKT with standard processing units in the recurrent layer. (Piech et al. used a recurrent net
with LSTM units in the hidden layer, but found similar performance with a standard recurrent net.)

Figure 2 shows key comparisons between DKT and the three variants of IRT. ASSISTments refers to
a corrected version of the 2009-2010 data set;2 KDD is the KDD cup set also used in the comparison
to PFA (Table 3); and Knewton is a proprietary data set. All variants of IRT outperform DKT, with
the following caveats. For the IRT models, both exercise-indexed and skill-indexed labels were
tested, and exercise-indexed labels were superior. For DKT, it was not computationally feasible to

2Wilson et al. corrected ASSISTments by selecting only a single skill for all exercises labeled with multiple
skills, in contrast to Xiong et al., who merged multiple skills into a single meta-skill.

Figure 2: Comparison of DKT and variants of Item-Response Theory (IRT) including temporal IRT
(TIRT) and hierarchical IRT (HIRT).
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evaluate exercise-indexed labels for KDD and Knewton. Thus, for these data sets the comparison
is mismatched in the information provided to the models, but one might consider them matched
in terms of computational tractability. Interestingly, for ASSISTments, DKT did no better with
exercise-indexed labels than with skill-indexed labels. This result may be due to the fact that exercises
are presented in a fixed order for all students.

4.3 Comparison to state-of-the-art BKT

The original BKT model [3] spawned many variants and extensions that have improved the model’s
predictive performance. Khajah et al. [11] compared DKT to three extensions of BKT that have
shown promise. These three extensions were selected based on an analysis of information that DKT
can in principle exploit but which off-the-shelf BKT cannot. The three extensions are:

• Incorporating latent student abilities. Individuating predictions based on a student’s ability
is a core element of IRT, and has been incorporated into BKT [10, 12]. The latent ability is
one means by which information can be shared across skills.

• Forgetting. The two-state learning model that underlies BKT allows for transitions both
from a state of not knowing to a state of knowing as well as from a state of knowing to not
knowing. The latter transition, sometimes referred to as forgetting, is dropped from most
implementations of BKT, but it is a simple means by which recency effects can be modeled.
DKT, like all recurrent neural nets, is very effective in acting on recent information in a
sequence.

• Skill discovery. Automated procedures have been proposed to discover the mapping of
exercises to skills from performance data [7, 13]. The approach in [13] couples BKT with a
technique that searches over partitions of the exercise labels to simultaneously (1) determine
which skill is required to correctly answer each exercise, and (2) model a student’s dynamical
knowledge state for each skill. Formally, the technique assigns each exercise label to a
latent skill such that a student’s expected accuracy on a sequence of same-skill exercises
improves monotonically with practice according to BKT. The technique incorporates a
nonparametric prior over the exercise-skill assignments that is based on expert-provided
skills, when available, and a weighted Chinese restaurant process [9].

Figure 3 shows a comparison of DKT with five versions of BKT: the original, one version for each of
the three extensions, and one version containing all three extensions, termed BKT+FSA. Evaluating
the models on four data sets, Khajah et al. [11] found that BKT+FSA slightly outperforms DKT on
two, and DKT slightly outperforms BKT+FSA on two.

5 Discussion

DKT is a powerful, general-purpose framework for modeling student proficiency. Our goal was to
determine whether this powerful, general-purpose framework is necessary to obtain the best predictive
performance on a data set. We found that while DKT does outperform the classic, twenty year old
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BKT—even after several methodological issues with the original research are addressed—other
models achieve a level of performance comparable to that of DKT. In particular, we investigated
(1) PFA, a logistic regression model which predicts based on counts of previous successful and
unsuccessful attempts to perform skill-specific exercises; (2) IRT, a model that infers latent student
and exercise characteristics and is readily extended to handle structure among exercises and temporal
variation in student knowledge state; (3) BKT+FSA, a state-of-the-art variant of BKT that incorporates
forgetting, skill discovery, and inference of skill-invariant student ability.

Neural net methods like DKT have their strength in being able to discover novel representations
through deep networks that transform representation at each stage. If this ‘depth’ was fully exploited
by DKT, DKT should perform better than methods like PFA, IRT, and BKT+FSA which operate on
predefined representations. (One might consider the skill-induction component of BKT+FSA to be a
form of representation discovery, but it is an extremely simple all-or-none partitioning of exercises
into skills; in contrast, neural net representations would allow each exercise to have continuously
varying degree of dependence to each skill in a completely unconstrained manner.)

PFA, IRT, and BKT+FSA vary in the information they use for prediction, but they share an under-
lying probabilistic foundation and the fact that each model has parameters and inferred states are
psychologically meaningful. DKT’s flexibility comes at a price: interpretability. DKT is massive
neural network model with tens of thousands of parameters which are individually impossible to
interpret. Although the creators of DKT did not have to invest much up-front time analyzing their
domain, they did have to invest substantive effort to understand what the model had actually learned.

For estimation of student proficiency, deep learning does not appear to be the panacea, particularly
when an explicit underlying theory, explanatory power, and interpretability matter. Nonetheless,
we anticipate that deep learning has a promising future in educational data mining, but that future
depends on data sets that have a much richer encoding of the exercises and learning context. For
example, with a deep learning approach, the input could be extended from exercise labels to the
raw text of the exercise along with associated images, and even metadata concerning the placement
of the exercise in the curriculum. Input could also include information about the students—their
gaze pattern, state of altertness, reading and response latencies—as well as contextual information
such as time of day, recent activities the student had engaged in, etc. As data sets grow in size, the
potential to exploit richer data sources increases, and no explicit theory is powerful enough to predict
the impact of and interactions among these many factors. When we reach this point, black-box neural
net models will be needed.
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